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Abstract

Purpose – The purpose of this paper is to present a fast nonlinear solver for the prediction of
transients in network flows.
Design/methodology/approach – Broyden method-based nonlinear solvers are developed to solve
the system of conservation equation for fluids by judiciously exploiting physical coupling among the
equations.
Findings – To demonstrate the feasibility and robustness of the solvers, two test cases of practical
engineering interest were solved. The results obtained by the solvers were verified against analytical
results for a simplified case. The performance of the solvers was found to be comparable or better
than existing solvers.
Originality/value – The proposed solver enables predictions of fluid and thermal transients in
complex flow networks feasible in reduced computational time.
Keywords Flow, Heat transfer, Fluids
Paper type Research paper

Nomenclature

A cross-sectional area (ft2)

Acc tube cross-sectional area (ft2)

a speed of sound (ft/s)

Cf specific heat of the fluid (Btu/lb �F)

CL flow coefficient

Cp specific heat at constant pressure
(Btu/lb �F)

Cw specific heat of the tube wall
(Btu/lb �F)

c wave speed (ft/s)

D diameter of the pipe (ft)

f* Darcy-Weisbach friction factor

gc gravitational constant (32.174 lb-
ft/lbf s2)

h enthalpy (Btu/lb)

hc heat transfer coefficient (Btu/ft2-
s �F)

J mechanical equivalent of heat
(¼778 ft-lbf/Btu)

Kf* flow resistance coefficient (lbf-s
2/

(lb-ft)2)

Krot nondimensional rotating flow
resistance coefficient

L length of the tube (ft)

_mm mass flow rate (lbm/s)

m resident mass (lb)
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NRe Reynolds number

n number of branches

O order

p pressure (lbf/ft
2)

_QQ heat source (Btu/s)

R gas constant (lbf-ft/lb-�R)

r radius (ft)

S momentum source (lbf)

T temperature (�F)

Tf fluid temperature (�F)

Tw wall temperature (�F)

t time (s)

V volume (ft3)

v fluid velocity (ft/s)

z compressibility factor

� tube wall characteristic length (ft)

" surface roughness of pipe (ft)

�f fluid density (lb/ft3)

�w tube wall density (lb/ft3)

Subscripts

i ith node

ij branch connecting nodes i and j

j jth node

u upstream

1. Introduction
The computation of fluid flow in network consisting of both systems and components
is of significant importance in engineering and industry such as design and operation
of rocket propulsion systems(Majumdar and Steadman, 2001), design of natural gas
and water distribution (Osiadacz, 1988), and design of air flow through a gas turbine
combustor (Stuttaford and Rubini, 1996). Most of the existing network flow analysis
methods deal mainly with specific flows such as flow in pipelines, incompressible
flows, slightly compressible flows, or isothermal flows. They also use the pressure
correction technique proposed in Patankar and Spalding (1972) for their computation
(Greyvenstein and Laurie, 1994).

In Majumdar (1999), a novel finite, volume-based network flow analysis procedure that
is capable of analyzing unsteady compressible flows in complex networks involving both
components and systems is described. It uses a ‘‘staggered grid’’ technique (Patankar,
1980) and solves the discrete coupled nonlinear conservation equations simultaneously by
using Newton’s method. Newton’s method is computationally costly for large-scale flow
network problems involving large numbers of nodes and branches. The major part of the
computational (CPU) effort comes from the computation and inversion of the Jacobian
matrix.

Another method suitable for solving discrete nonlinear conservation equations is the
Broyden’s method (Broyden, 1965). In Broyden’s method, one replaces the Jacobian matrix
with a suitable approximate Jacobian matrix and updates it as iteration progresses. The
latter update procedure has the advantage of not having to use Gaussian elimination to
solve the linear algebraic system. Broyden’s method is fast and suitable for computing
transient problems and problems that require computation in a long time interval.

The application that motivated the present work is the modeling and prediction of
fluid and thermal transients encountered in the design and operation of rocket
propulsion systems. Fluid transients such as rapid valve closure and priming of
evacuated feed lines significantly influence the design and operation of both spacecraft
and launch vehicle propulsion systems. Fluid transients occur at system activation and
shutdown in rocket propulsion systems. Due to ground safety requirements many
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spacecraft are launched without any propellant and they are evacuated while reaching
the orbit. Pressure surges are created during propulsion system activation and
shutdown due to valve opening and closure, respectively. These pressure surges must
be predicted accurately to ensure structural integrity of the propulsion system fluid
network. The method of characteristics (MOC) is a popular method for computing fluid
transients in straight pipeline (Wylie and Streeter, 1982; Chaudhry, 1979; Moody, 1990).
MOC is a semi-analytical technique that solves the mass and momentum conservation
equations along the characteristics. However, this technique is limited to simple
systems such as straight pipelines and certain constraints involving the relative value
of the time step to the space step, making it computationally expensive. The chilldown
of fluid transfer lines is common in the operation of a cryogenic propulsion system such
as those found in spacecraft and missiles. The chilldown of cryogenic transfer lines is a
complex, unsteady heat transfer problem involving rapid heat exchange from a solid
structure to a fluid with phase change as well as pressure fluctuations. It is of great
interest as it directly impacts the design of delivery systems for the propellant. The
prediction of chilldown time, temperature, and pressure during the chilldown process
for a given transfer line is of interest in cryogenic operation. Prediction of chilldown
time requires modeling and understanding of transient heat transfer phenomena.
Several analytical and numerical studies on chilldown of cryogenic transfer lines have
been reported in the literature (Cross et al., 2002; Chi, 1965; Steward et al., 1970). In Chi
(1965), an analytical model of the chilldown under the assumption of constant flow
rate, heat transfer coefficient, and fluid properties can be found. In Steward et al. (1970),
a numerical modeling of a one-dimensional chilldown process was presented using a
finite difference method. In Cross et al. (2002), finite volume-based numerical modeling
was presented for prediction of the chilldown of a cryogenic transfer line, based only on
transient heat transfer effects and neglecting fluid transient effects.

In this paper, some Broyden method-based nonlinear solvers are presented for
solving the system of conservation equations for network flows by judiciously
exploiting physical coupling among the equations. Numerical methods for solving the
nonlinear, fully coupled system of algebraic equations arising from network flow
models can be classified into two broad classes:

(1) fixed-point iteration, also known as successive substitution method; and

(2) Newton’s method, which is a simultaneous solution method.

In certain applications, the coupling among mass conservation, momentum
conservation, and equation of state is stronger than other equations such as the
enthalpy equation or specie conservation equation. This coupling among equations is
exploited to devise a ‘‘divide-and-conquer’’ strategy whereby the equations that are
more strongly coupled are solved by the Newton’s method and the equations that are
not strongly coupled with the other set of equations are solved by fixed-point iterations.
This strategy, as demonstrated in the sequel, leads to significant memory and
computer time savings. An added advantage of this ‘‘splitting’’ strategy over the ‘‘all-at-
once,’’ fully simultaneous strategy is that the fixed-point iteration can be used as an
initial guess for the Newton’s method, thus improving the convergence characteristics
of the Newton’s method and the overall algorithm. Therefore, four different solvers are
proposed for solving the nonlinear algebraic system of equations:

(1) hybrid Newton-successive substitution (Newton-SS) solver;

(2) Broyden solver;
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(3) hybrid Broyden-successive substitution (Broyden-SS); and

(4) Newton solver.

The nonlinear solver proposed in Majumdar (1999) and Cross et al. (2002) used a
combination of the successive substitution method and the Newton’s method (Newton-
SS) to solve the nonlinear systems.

The proposed nonlinear solver’s ability to fast and accurately predict fluid
transients is demonstrated in numerical prediction of chilldown in cryogenic transfer
lines and pressure surges during rapid valve opening without heat transfer.

2. Network finite volume formulation
The analysis of the flow distribution in a complex flow network requires modeling of
the system using boundary nodes, internal nodes, and branches. The flow domain is
divided into a discrete number of control volumes and the conservation equations of
mass, momentum, and energy are determined for each control volume. At boundary
nodes, pressures and temperatures are prescribed. At internal nodes, pressures and
temperatures are computed by solving time-dependent mass and energy conservation
equations. Each internal node is a control volume where there are inflow and outflow of
mass and energy at the boundaries of the control volume. The discretization scheme
assumes that the flow is driven by the pressure differential between the upstream and
downstream nodes. This is known as the ‘‘staggered grid’’ technique that is popular in
solving Navier-Stokes equations by the finite volume method (Patankar, 1980).

Mass and energy conservation equations are solved at the internal nodes in
conjunction with thermodynamic equation of state. Flow rates are computed at the
branches by solving the time-dependent momentum conservation equation. This
process of discretization allows the development of the set of conservation equations in
an unstructured coordinate system. Figure 1 displays a schematic showing adjacent
nodes, their connecting branches, and the indexing system used by the network solver.

2.1 Mass conservation equation
The mass conservation equation at the ith node can be expressed as:

ðmiÞtþ�t � ðmiÞt
�t

¼ �
Xj¼n

j¼1

_mmij: ð1Þ

Equation (1) requires that, for the transient formulation, the net mass flow from a given
node must equate to the rate of change of mass in the control volume.

Figure 1.
Schematic of GFSSP
nodes, branches, and
indexing practice
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2.2 Energy conservation
The energy conservation equation for node i, shown in Figure 1, can be expressed
following the first law of thermodynamics and using enthalpy as the dependent
variable. It can be written as:

m h� p

rJ

� �
tþ�t

�m h� p

rJ

� �
t

�t
¼
Xj¼n

j¼1

fmax½� _mmij; 0�hj �max½ _mmij; 0�hig þ _QQi: ð2Þ

Equation (2) shows that for transient flow, the rate of increase of internal energy in the
control volume is equal to the rate of energy transport into the control volume minus
the rate of energy transport from the control volume plus any external rate of heat
transfer from the surroundings ð _QQiÞ. One example is solid-to-fluid heat transfer that is
further described in section 4.

The max operator used in equation (2) is known as an upwind differencing scheme
that has been extensively employed in the numerical solution of Navier-Stokes
equations in convective heat transfer and fluid flow applications. When the flow
direction is not known, this operator allows the transport of energy only from its
upstream neighbor. In other words, the upstream neighbor influences its downstream
neighbor but not vice versa.

2.3 Momentum conservation equation
The flow rate in a branch is calculated from the momentum conservation equation
(equation (3)) that represents the balance of fluid forces acting on a given branch:

ðmuÞtþ�t � ðmuÞt
gc�t

þmax½ _mmij; 0�ðuij � uuÞ �max½� _mmij; 0�ðud � uijÞ

¼ ðpi � pjÞAij � Kf� _mmijj _mmijjAij:

ð3Þ

A typical branch configuration is shown in Figure 2. Inertia, pressure, and friction are
considered in the conservation equation. It should also be noted that the flow rate ð _mmÞ
is a vector quantity. A negative value of _mmij signifies that the flow is directed from the
jth node to the ith node.

The two terms on the left side of the momentum equation represent the inertia of the
fluid. The first term is the time-dependent term that must be considered for unsteady
calculations. The second term is significant when there is a large change in area or
density from branch to branch. The first term on the right side of the momentum
equation represents the pressure gradient in the branch. The second term represents
the frictional effect. Friction is modeled as a product of Kf *, the square of the flow rate,
and area. Kf * is a function of the fluid density in the branch and the nature of flow
passage being modeled by the branch. For a pipe with length (L) and diameter (D), Kf *

can be expressed as Kf � ¼ 8f �L=rup
2D5 gc.

Figure 2.
Schematic of a branch ij

with nodes i and j
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For a valve, Kf * can be expressed as Kf � ¼ 1=2�uC2
LA2 gc. The friction factor f* in the

definition of Kf * is calculated from the Colebrook equation (1938-1939), which is
expressed as 1=f � ¼ �2 log 1=3:7D þ 2:51=NRe

ffiffiffiffiffi
f �
p� �

; where " is the surface
roughness height which is a property of the pipe material.

The momentum conservation equation also requires knowledge of the density and the
viscosity of the fluid within the branch. These are functions of the temperatures and
pressures, and are provided by the thermodynamic property program GASP (Hendricks
et al., 1975) that provides the thermodynamic and transport properties for different fluids.

2.4 Equation of state
Transient flow calculations require the knowledge of resident mass in a control volume.
The resident mass in the ith control volume is calculated from the equation of state for
real fluids:

m ¼ pV

RTz
: ð4Þ

The compressibility factor (z) and temperature (T) in equation (4) are calculated from
the thermodynamic property program (Hendricks et al., 1975) for a given pressure and
enthalpy. The pressure, enthalpy, and resident mass in internal nodes and the flow rate
in branches are calculated by solving the fully coupled, nonlinear system of equations
(1), (2), (4), and (3), respectively. There is no explicit equation for pressure. The pressure
is calculated implicitly from the mass conservation equation. In section 3, the nonlinear
iterative solvers to solve the system equations (1)-(4) are described.

3. Nonlinear solvers
The fully discrete conservation equations (1)-(4) can be written as F(x) ¼ 0, where x is
the n-dimensional array containing the unknown pressure, temperature, flow rate,
mass, and enthalpy. The function F:Rn ! Rn represents the discrete conservation
equations (1)-(4). The simplest iterative method for solving a system of nonlinear,
simultaneous, algebraic system of equations is the fixed-point iteration or successive
substitution method. In this method, the system F(x) ¼ 0 is written as x ¼ G(x). x is
iteratively computed by solving xkþ1 ¼ G(xk) for a given approximate solution xk.
Under suitable assumptions on the function G(x), namely G is differentiable andPn

i¼1ððð@GiðxÞÞ=@xjÞ < 1, for k ¼ 1 to n, at least in the neighborhood of the solution,
the approximate solutions xkþ1 converges within specified tolerance to a solution x and
the convergence rate is linear. However, for complex problems, these conditions are
very difficult to verify in practice and implementation of safeguards are necessary. If
the iterations exhibit oscillatory behavior, a simple way to damp them is to use the
linear combination of xk and xkþ1, �xk þ (1–�) xkþ1, as the new approximation. In
most cases, with a suitable choice of 0 � � � 1, convergence can be achieved.
However, even if one can find � that would guarantee convergence, the convergence
can be very slow with an excessive number of iterations, such is the case with the large-
scale, complex flow network computations. If the function F(x) is differentiable, the
derivative information can be used for convergence acceleration. Newton’s method
computes the approximation xkþ1 by solving J(xk)(xkþ1–xk) ¼ �F(xk), where J(xk) is
the Jacobian matrix JðxÞij ¼ ðð@FiðxÞÞ=@xjÞ. Solving this equation requires computing
the Jacobian matrix by finite difference approximations and solving the linear
algebraic system of equations by Gaussian elimination with partial pivoting. For
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smooth functions with an initial guess sufficiently close to the solution, this method has
a quadratic convergence rate. However, total CPU cost associated with derivative
evaluation and Gaussian elimination is O(n3) and thus can be prohibitively expensive
for large-scale network flow problems involving a large number of nodes and branches.

3.1 Broyden’s method
The two CPU-intensive steps of evaluating the Jacobian matrix and inverting it can be
done more efficiently by using a multidimensional generalization of the secant method
at the cost of superlinear convergence. These methods are known as quasi-Newton
methods. In (Broyden (1965), a novel way to approximate the inverse Jacobian was
proposed using the Sherman-Morrison formula. In this method, new approximation
xnþ1 is computed by solving xnþ1 ¼ xn � J�1

n FðxnÞ, where Jn
�1 is the approximate

Jacobian matrix and is computed by the formula J�1
n ¼ J�1

n þ ½ð�xn � J�1
n�1�FnÞ=

ðð�xnÞtJ�1
n�1�FnÞ� � ð�xnÞtJ�1

n�1, where (�xn)t is the transpose of the correction vector
�xn.

Broyden’s method outlined above requires n function evaluations as opposed to
n2 þ n evaluations in Newton’s method. Moreover, Newton’s method requires solving
the linear system involving O(n3) arithmetic operations, where as Broyden’s method
requires an update that involves only matrix vector multiplication requiring only O(n2)
arithmetic operations.

3.2 Hybrid methods
Here, the ‘‘divide-and-conquer’’ strategy that exploits the structure of the physical
coupling among the conservation equations and the design of a hybrid Newton-fixed-
point iteration method is described. Let x1 denote the array of enthalpy variables of
dimension k and x2 denote the array containing the pressure, mass, and flow rate
variables of dimension m, where m þ k ¼ n. The equation F(x) ¼ F(x1, x2) ¼ 0 is split
into two sets of equations: f(x2) ¼ 0 for the unknown x1 and g(x1, x2) ¼ 0 for the
unknown x2. The equation f(x2) ¼ 0 represents the tightly coupled continuity,
momentum, and equation of state. The equation g(x1, x2) ¼ 0 represents the energy
equation. In the hybrid Newton-fixed-point iteration, equation f(x1) ¼ 0 is solved by
Newton’s method and the equation g(x1, x2) ¼ 0 is solved by fixed-point iteration
(successive substitution method). The resulting solver can be summarized as follows:

Set k ¼ 0:

. Given x k
1 and x k

2 , x kþ1
1 by Newton’s method: Jðx k

1 Þðx kþ1
1 � x k

1 Þ ¼ �f ðx k
1 Þ.

. For m ¼ 0, 1, 2, . . . , compute x mþ1
2 by successive substitution method:

x mþ1
2 ¼ gðx kþ1

1 ; x m
2 Þ:

. Set x kþ1
2 ¼ x�2ðconverged xm

2 Þ, k ¼ k þ 1 and go to (1).

In the hybrid Broyden-fixed-point iteration method, the tightly coupled equations
f(x1) ¼ 0 are solved by the Broyden’s method and the equation g(x1, x2) ¼ 0 is solved
by successive substitution method. It can be summarized as follows:

Set k ¼ 0:

. Given x k
1 and x k

2 , x kþ1
1 by Broyden’s method: x kþ1

1 ¼ x k
1 � J�1

k f ðx k
1 Þ.



HFF
20,6

624

. For m ¼ 0, 1, 2, . . . , compute x mþ1
1 by successive substitution method:

x mþ1
2 ¼ qðx kþ1

1 ; x m
2 Þ:

. Set x kþ1
2 ¼ x�2ðconverged x m

2 Þ, k ¼ k þ 1 and go to (1).

In general, Broyden’s method may not converge when started far from the solution in some
problems. This was the case when Broyden’s method was used to solve the sudden valve
closure problem presented in section 4. It is therefore necessary to use some globalization
(safeguard) technique to guarantee convergence of the method. The simplest precaution is
to use xkþ1 ¼ xk þ �k �xk, where �k is a scalar parameter and �xk ¼ xkþ1–xk. The
parameter �k reduces the correction �xk when it is too large. Line search bracketing is
used to select the best � systematically with the help of residual F(xk þ �k �xk). The
basic idea is to use the iteration history to model the scalar function q(�) ¼ kF(xk þ �
�xk)kwith a polynomial whose minimum is taken as the next step length �. A three-point
parabolic polynomial model is used for this purpose. If �c is not acceptable, a model
polynomial is constructed and its minimum �t is computed analytically. Then, � is set as
follows:

a ¼
s0ac if at<s0ac

s1ac if at>s0ac

at otherwise
:

8<
:

The three-point parabolic polynomial model is constructed as follows. If the full step
xk þ �xk is rejected, � ¼ �1 is set and tried again. If the second step is also rejected, the
values q(0), q(�c), and q(��) remain, where �c and �� are the most recently rejected values
of�. The three-point parabolic polynomial is the interpolation of the data (0,q(0)), (�c, q(�c)),
and (��,q(��)). See Kelly (1995) for more details. In implementations here, �0 ¼ 1 and
�1 ¼ 0.5 are used.

In section 4, four solvers on two test problems involving fluid and thermal
transients in cryogenic pipeline are implemented. The following shortened forms of
these four nonlinear solvers are used: Broyden for the simultaneous Broyden solver,
Newton for the simultaneous Newton solver, Broyden-SS for the hybrid Broyden-SS
solver, and Newton-SS for the hybrid Newton-SS solver. In a typical unsteady
calculation, our finite volume flow network procedure carries out the following steps:

(1) At the beginning of a new time step, supply an initial value for all the
dependent variables in the flow domain, e.g. pressure, resident mass, density,
and enthalpy, at all internal and boundary nodes and flow rates at all branches.

(2) Begin the outer iteration loop; this loop calculates density, temperature,
compressibility factor, viscosity, etc. at all internal nodes and flow resistance in
the branches.

(3) Solve mass conservation equation (1) in internal nodes, momentum
conservation equation (3) in branches, energy conservation equation (2), and
equation (4) of resident mass in internal nodes by the Newton/Broyden solver.

(4) This step is carried out only in the hybrid solvers: solve the energy
conservation equation by the successive substitution method.
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(5) Calculate density and temperature from the equation of state for calculated
pressure and enthalpy at each internal node. Viscosity is also computed from the
thermophysical property correlation for calculated pressure and temperature.

(6) Calculate flow resistance Kf *.

(7) Repeat steps (3)-(6) until the maximum difference is less than the specified
tolerance of convergence.

(8) Repeat steps (1)-(7) until final time is reached.

4. Test problems and CPU results
The feasibility and robustness of the proposed solvers will be demonstrated by solving
the following two test problems involving transients:

(1) sudden valve closure in a horizontal pipeline; and

(2) chilldown of a cryogenic pipeline.

4.1 Test problem I: fluid transient following sudden valve closure
In this test, liquid oxygen (lox) flows from a tank at the upstream end to the
downstream end of a pipeline of constant area. At t ¼ 0, a valve located at the
downstream end of the pipeline begins to close, which is fully open in the beginning.
The physical model is schematically shown in Figure 3. The objective of this problem
(Majumdar and Flachbart, 2003) is to be able to predict the liquid’s response to the
sudden valve closure, including the maximum expected pressure and the frequency of
oscillation. The lox flows at 500 psia at a temperature of�260 �F through a 400-ft-long,
0.25-in-diameter pipeline at a mass flow rate of 0.0963 lbm/s. At time zero, a valve at
the end of the pipeline begins a 100-ms rapid closure.

In order to apply the network finite volume formulation, the pipeline is discretized
into nodes that are connected by branches as shown in Figure 1. The branches are
segments of pipeline that can be compared with ‘‘reaches’’ of the MOC. Figure 4 shows
the generalized fluid system simulation program (GFSSP) finite volume model of the
pipeline and tank. The model consists of 12 nodes and 11 branches. Node 1 is a
boundary node representing the propellant tank. The pressure and temperature are
prescribed at node 1. Node 12 is also a boundary node representing ambient condition.
Nodes 2-11 are internal nodes where pressure and temperature are computed. The first

Figure 3.
Schematic of the pipeline
connected to a tank with
an isolated valve placed

at the end

Figure 4.
Finite volume GFSSP

model of the flow network
with single pipeline

and valve
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ten branches represent pipe segments, each 40 ft in length. Branch 1,112 represents
the valve.

The valve closes in 0.1 s as described in Table I, which is considered rapid closing
since the valve closure time is less than the period of oscillation, 2L/a, where L is the
length of the tube and a is the speed of sound. The valve closure history is shown in
Table I. The inflow boundary pressure and temperature are kept at 500 psia and
�260 �F, respectively. The outflow boundary pressure and temperature are kept at
450 psia and �260 �F, respectively, so that there is a 50-psia pressure difference in the
pipe to drive the flow. In order to obtain the initial conditions, a steady-state flow
distribution is first calculated with 450 psia ambient boundary pressures.

4.1.1 Analytical model and solution. For one-dimensional, unsteady flow, the two
partial differential equations for mass and momentum conservation in a horizontal
pipeline are Wylie and Streeter (1982) and Chaudhry (1979):

@p

@t
þ �c2 @v

@x
¼ 0 ð5Þ

and
@v

@t
þ 1

�

@p

@x
þ f �

2D
vjvj ¼ 0; ð6Þ

where v is the fluid velocity inside the pipe, p the pressure, � the fluid density, f* the
Darcy-Weisbach friction factor, D the diameter of the pipe, and c the wave speed.
Equations (5) and (6) form coupled, nonlinear, hyperbolic, partial differential equations.

The MOC solution has been chosen as a benchmark for verification. The MOC is the
classical method for calculating fluid transients in straight pipeline (Wylie and Streeter,
1982; Chaudhry, 1979; Moody, 1990). In the MOC (Abott, 1966), these partial differential
equations are converted into a system of ordinary differential equations. The following is
obtained:

Cþ :
dv

dt
þ 1

�c

dp

dt
þ f �

2D
vjvj ¼ 0;

dx

dt
¼ c

and

C� :
dv

dt
� 1

�c

dp

dt
þ f �

2D
vjvj ¼ 0;

dx

dt
¼ �c;

where ‘‘þ’’ is for waves coming from upstream, while ‘‘�’’ is for the waves coming from
downstream.

These ordinary differential equations can be solved by the finite difference method
along the lines of characteristics Cþ and C�. Integrating these equations along the

Table I.
Valve closure history

Time (s) Area (in2)

0 0.0491
0.02 0.0164
0.04 0.0055
0.06 0.0018
0.08 0.0006
0.10 0
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characteristic lines between time steps t and t þ �t yields:

vnþ1
j ¼ 1

2
ðvn

j�1 þ vn
jþ1Þ þ

1

2�c
ðpn

j�1 � pn
jþ1Þ �

�tf �

4D
ðvn

jþ1jvn
jþ1j þ vn

j�1jvn
j�1jÞ ð7Þ

and

pnþ1
j ¼ 1

2
ðpn

j�1 þ pn
jþ1Þ þ

�c

2
ðvn

j�1 � vn
jþ1Þ �

�tf �c

4D
ðvn

jþ1jvn
jþ1j � vn

j�1jvn
j�1jÞ; ð8Þ

in which vnþ1
j is the unknown velocity at point xj at time tnþ1, and pnþ1

j the unknown
pressure at point xj at time tnþ1. Discretizing the pipe into segments of length �x,
equations (7) and (8) can be used to calculate the pressure and velocity at all interior
points of the pipe. Time step should satisfy the Courant-Friedrichs-Lewy condition for
numerical stability which is Cr ¼ c�t/�x < 1.

4.1.2 Results. The purpose of the investigation was to show the efficiency and
accuracy of the four solvers, and compare its performance with the Newton-SS
nonlinear solver proposed in Majumdar (1999). For numerical comparison, the
computed pressure at the node immediately behind the valve will be used. Comparison
of predicted maximum pressures and period of oscillations between the MOC and the
nonlinear network solver is shown in Table II for a finite volume formulation involving
20 branches. Good agreement is shown for the period of oscillation and maximum
pressure between the analytical and numerical solutions. However, the accuracy of the
numerical results are sensitive to three numerical parameters:

(1) grid size (number of branches);

(2) time step size (�t); and

(3) tolerance for the residual.

Several CPU experiments to elucidate their effects were performed. In Figures 5-7, the
computed results of pressure with the MOC results are compared. In these
computations, the tolerance and time step are fixed, and the number of branches is
varied, which amounts to increasing the spatial grid resolution. As observed in the
figures, increasing the number of branches increases the accuracy of the results.
Further improvement in accuracy is obtained by reducing the time step size as seen in
Figures 8-10. In Figure 8, unphysical oscillations in the numerical results are shown,
especially with the Broyden solvers. However, this numerical artifact disappears with
the usage of more branches. Another way to eliminate these unphysical oscillations
that does not require an increase in the number of branches is to use smaller tolerances,
which is useful if one cannot or does not want to increase the number of branches.

Table II.
Maximum pressure and

period of oscillation
computed by various

solvers with 20-branch
model

Solver Maximum pressure (psia) Period of oscillation (s)

MOC 636 0.65
Newton 618.64 0.646
Broyden 616.59 0.648
Newton-SS 616.17 0.645
Broyden-SS 618.98 0.648
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Figure 11 clearly shows that oscillations in the pressure that are pure numerical
artifacts can be successfully eliminated by using tighter tolerance to residual.
Experience with the four solvers in this example is that smaller tolerance is generally
necessary for convergence and accuracy. This holds true more so for the Broyden
solvers than for the Newton solvers. But, CPU experiments with other problems,
including the chilldown problem presented next, show too small a tolerance is not
necessary for all problems.

Discrepancies, however, exist between the MOC and the four solvers in damping
rate and shape of the curve. These are largely due to the way the physics of the flow
was modeled in the MOC and network flow solvers. MOC, for example, uses speed of
sound in the governing equations, whereas in the network flow solvers, the effect of
speed of sound is modeled by the compressibility factor, which is computed from the

Figure 6.
Ten-branch model results
with tolerance ¼ 10�8

and time step �t ¼ 0.01 s

Figure 5.
Five-branch model results
with tolerance ¼ 10�8

and time step �t ¼ 0.01 s
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energy equation and equation of state. Also, network flow solvers and MOC use
different time steps, and due to this the valve closure history, has not been perfectly
matched between the solutions.

Table III shows CPU time for each solver for the time step of �t ¼ 0.01 s and
Table IV shows similar comparison for the time step of �t ¼ 0.001 s. Both tables show
CPU time for five-, ten-, and 20-branch models. The CPU savings in the Broyden
method is substantial, as seen in both cases. Table III shows that in the 20-branch case,
Broyden-SS gives a 42 percent reduction in CPU time over Newton-SS and pure
Broyden gives a 61 percent reduction in CPU time in the case of pure Newton solver.
Similar reductions are seen in the case of ten and 20 branches. In the ten-branch case,
Broyden-SS gives a 56 percent reduction over Newton-SS and Broyden gives a 63
percent reduction over Newton. In the five-branch case, these reductions are 52 and 66
percent, respectively.

Figure 7.
20-branch model results

with tolerance ¼ 10�8

and time step �t ¼ 0.01 s

Figure 8.
Five-branch model results

with tolerance ¼ 10�8

and time step
�t ¼ 0.001 s
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Table IV shows that in the five-branch case, Broyden-SS gives a 49 percent reduction in
CPU time over Newton-SS, and pure Broyden gives an 83 percent reduction in CPU
time in the case of pure Newton solver. Similar reductions are seen in the case of ten
and 20 branches. In the ten-branch case, Broyden-SS gives a 46 percent reduction over
Newton-SS, and Broyden gives a 77 percent reduction over Newton. In the 20-branch
case, these reductions are 44 and 71 percent, respectively.

4.2 Test case II: chilldown of cryogenic pipeline
In this test case, the following conjugate heat transfer problem is solved. Hydrogen gas
at cryogenic temperature flows through a tube initially at ambient temperature. The

Figure 9.
Ten-branch model results
with tolerance ¼ 10�8

and time step
�t ¼ 0.001 s

Figure 10.
20-branch model results
with tolerance ¼ 10�8

and time step
�t ¼ 0.001 s
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physical model is schematically shown in Figure 12. It is of interest to predict how long
it takes to chill down a given pipeline. In a fluid-solid network for conjugate heat
transfer, solid nodes, ambient nodes, and conductors become part of the flow network.
There are four types of conductors:

(1) solid-to-solid conductor;

(2) solid-to-solid radiation conductor;

(3) solid-to-fluid conductor; and

(4) solid-to-ambient conductor.

A typical flow network for conjugate heat transfer is shown in Figure 13.

Figure 11.
A ten-branch result that

shows the effects of
tolerance in mitigating the

unphysical oscillations

Table III.
CPU time comparison

with various solvers used
to solve the rapid valve

closure problem with
tolerance ¼10�8 and

time step size �t ¼ 0.01

Method CPU (5-branch model) (s) CPU (10-branch model) (s) CPU (20-branch model) (s)

Broyden-SS 1,136 2,119 5,845
Newton-SS 2,376 4,824 10,094
Newton 3,641 7,613 21,903
Broyden 1,254 2,824 8,667

Table IV.
CPU time comparison

with various solvers used
to solve the rapid valve

closure problem with
tolerance ¼10�8 and time

step size �t ¼ 0.001

Method CPU (5-branch model) (s) CPU (10-branch model) (s) CPU (20-branch model) (s)

Broyden-SS 9,109 18,654 49,452
Newton-SS 17,918 34,307 87,411
Newton 35,435 65,222 168,707
Broyden 6,000 14,757 50,078
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The energy conservation equation for the solid node is solved in conjunction with all
other conservation equations. The energy conservation for the solid node can be
expressed as follows (Cross et al., 2002):

ðmCpTwÞtþ�t � ðmCpTwÞt
�t

¼ �hcAðTw � Tf Þ; ð9Þ

where hc is the heat transfer coefficient, Tw the wall temperature, and Tf the fluid
temperature. In this test problem, a constant heat transfer coefficient has been used for
comparison with the analytical solution. In our numerical implementations, equation
(9) is solved by either successive substitution or Newton’s method for the solid
temperature for the given fluid temperature and then is repeated until convergence.

For numerical simulations, a copper tube was selected that is 200 ft long, has a 5/8-
in inside diameter, and is initially at a temperature of Tw,0 ¼ 44.334 �F. The tube is then
chilled by hydrogen entering the tube at Tf,0 ¼ �200 �F and 75 psia. The pressure at
the outlet is set at 13.3 psia.

4.2.1 Cryogenic chilldown analytical model. Consider a situation where hydrogen, at
temperature Tf,0, enters a circular tube, whose temperature is Tw,0. The flow is
assumed to be one dimensional with fluid velocity in the axial direction only. Further,
assuming that:

. axial conduction in the fluid can be neglected;

. fluid mass flow rate is constant;

Figure 12.
Schematic of the
cryogenic pipeline

Figure 13.
A schematic showing the
connection of a solid node
with neighboring solid,
fluid, and ambient nodes
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. flow work can be neglected;

. heat transfer coefficient is constant; and

. solid and fluid properties are constant, it can be shown (Greyvenstein and Laurie,
1994) that the conservation of energy equations are:

hðTw � Tf Þ �
Cf _mm

�D

@Tf

@x
¼

Accrf Cf

�D

@Tf

@t
; ð10Þ

and

rwCwd
dTw

dt
¼ hðTf � TwÞ : ð11Þ

The coupled system of differential equations (10) and (11), together with the initial and
boundary conditions at t ¼ 0, Tw ¼ Tw,0 for all z and at z ¼ 0, Tf ¼ Tf,0 for all t, are
solved numerically by discretizing them using a finite difference method. Fourth-order
Runge-Kutta difference scheme (Butcher, 1987) is used for the time derivatives
discretization, while a backward difference discretization is used for the spatial derivatives.

4.2.2 Results. The conjugate heat transfer problem shown in Figure 12 was
simulated with a finite volume model consisting of 33 nodes and 32 branches
(Figure 14). Each branch is a pipe flow branch with a length of 80 in and a diameter of
0.625 in. Nodes 1 and 33 are boundary nodes where inlet and outlet conditions were
specified. Flow temperatures and pressures were calculated at internal nodes 2-32,

Figure 14.
Finite volume GFSSP

model of the flow network
for the cryogenic pipeline
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which all have an initial temperature of Tw,0 ¼ 44.334 �F. Each internal node was
connected to each other using solid-solid conductors. The solid nodes were also
connected to each other using solid-solid conductors. Each solid node has a mass of
3.475 lbm, an initial temperature of 44.334 �F, and has user-defined thermal
conductivity. The specific heat value of each solid node is 0.093 Btu/lbm-R. Each solid-
fluid conductor has a heat transfer area of 157.07 in2. However, for comparing the
numerical results of the network solvers with the analytical results, a constant value
h ¼ 0.125 Btu/s/ft2/�F is used for the heat transfer coefficient. The conduction area and
the distance for each solid-solid conductor are 0.477 in2 and 80 in, respectively.

Figures 15-18 show a comparison of fluid and solid wall temperatures computed
using the analytical model (Cross et al., 2002) with temperatures determined by the four
nonlinear network solvers. The analytical model uses a constant fluid properties and

Figure 16.
Comparison of (a) fluid
and (b) solid temperature
measured at a station
located 80 ft from the
entrance

Figure 15.
Comparison of (a) fluid
and (b) solid temperature
measured at a station
located 13.34 ft from the
entrance
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mass flow rate, whereas in nonlinear network solvers, these quantities are allowed to
vary. In spite of these differences, the computed quantities have very good agreement
in general. Table V presents the CPU time taken by the four nonlinear solvers with the
tolerance of 10�8. The Broyden-SS solver takes the least amount of CPU time and yet

Figure 17.
Comparison of (a) fluid

and (b) solid temperature
measured at a station

located 148.67 ft from the
entrance

Figure 18.
Comparison of (a) fluid

and (b) solid temperature
measured at a station

located 186.67 ft from the
entrance

Table V.
CPU time comparison

with various solvers
used to solve the

conjugate heat transfer
model with

tolerance ¼10�8

Solid
Fluid Newton (s) Successive substitution (s)

Newton 4,254 3,920
Broyden 1,843 1,280
Newton-SS 1,153 661
Broyden-SS 1,164 650
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produces results that are as accurate as the other three solvers. These observations are
reconfirmed by a simulation run with the tolerance of 10�6, as shown in Table VI. The
results in Table VI also reveal that use of smaller (tighter) tolerance is not essential for
all the problems, especially with the Broyden solvers. CPU experiments performed
with these solvers reported in this paper, and others that are not reported here,
unequivocally show that nonlinear solvers are reliable in numerically solving the
chilldown problem.

5. Conclusions
Fast, nonlinear solvers have been developed in a finite volume-based network flow
analysis program for fast and accurate predictions of fluid and thermal transients. The
proposed numerical method’s ability to predict fluid and thermal transients accurately
has been demonstrated by solving two important transient problems:

(1) the water hammer problem which involves a rapid valve closure in a long
cryogenic pipeline; and

(2) the chilldown problem in a cryogenic transfer line. Comparisons were made in
each case with analytical results, and most showed good agreement.

These agreements establish the viability of the nonlinear solvers to predict the fluid
and thermal transients for design of the propulsion system fluid network.

A judicious selection of nonlinear solvers to solve individual conservation equations
has been found to be a key element in improving CPU efficiency of the overall scheme.
It is preferable to use the simultaneous solver of Newton or Broyden to solve the mass
and momentum conservation equations and thermodynamic equation of state because
of the strong coupling between pressure, flow rate, and resident mass of the control
volume. For most problems, the energy conservation equation can be solved by
successive substitution (fixed-point iteration method) for improved efficiency. For both
types of problems stated in this paper, a combination of the Broyden and successive
substitution method is found to be superior to a combination of the Newton and
successive substitution method.
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